Outline 000	Simple Interest	Discount 00000	Compound interest	Ordinary Annuities 0	Other Annuities Certain

Quantitative Finance Economics, Finance and Management

Joaquim Montezuma de Carvalho, Alfredo D. Egídio dos Reis

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition (Deferred Annuity)

It's an annuity under which the first payment occurs at some specified future time.

The *PV* (Present Value) of an <u>annuity-due</u> deferred k years, with term R, is given by

$$PV = R_k | \ddot{a}_{\overline{n}i} = R v^k \ddot{a}_{\overline{n}i} = R_{k-1} | a_{\overline{n}i} = R v^{k-1} a_{\overline{n}i}$$

Outline 000	Simple Interest	Discount 00000	Compound interest	Ordinary Annuities 0	Other Annuities Certain		
Perpetuities							

Definition (Perpetuity)

A Perpetuity is an anunuity with infinite term Ordinary Perpetuity

$$\begin{aligned} a_{\overline{\infty}|i} &= \lim_{n \uparrow \infty} a_{\overline{n}|i} = \lim_{n \to \infty} \frac{1 - (1+i)^{-n}}{i} = \lim_{n \to \infty} \frac{1}{i} \left(1 - \frac{1}{(1+i)^n} \right) = \frac{1}{i} \end{aligned}$$
Perpetuity-due
$$\ddot{a}_{\overline{\infty}|i} = 1 + \frac{1}{i}$$

Example

Perpetua will start studying at ULisboa, where she intends to stay and find a job after. $i_A = 0.05$. Options: a) Flat rent: $\in 850/\text{month}$; b) Buy flat: $\in 127,500$.

 $i_M = (1,05)^{1/12} - 1 = 0,00407 \rightarrow 0,4074\%$ PV = 850a_{∞i_M} = 208,640,16€ > 127,500€