Quantitative Finance
 Economics, Finance and Management

Joaquim Montezuma de Carvalho, Alfredo D. Egídio dos Reis

Example (Deferred Annuity)

$$
P V=650{ }_{2}\left|a_{4 i}=650_{3}\right| \ddot{a}_{4 i}
$$

Definition (Deferred Annuity)

It's an annuity under which the first payment occurs at some specified future time.
The PV (Present Value) of an annuity-due deferred k years, with term R, is given by

$$
\begin{aligned}
P V & =R_{k} \mid \ddot{a}_{n i}=R v^{k} \ddot{a}_{n i} \\
& =R_{k-1} \mid a_{n i}=R v^{k-1} a_{n i}
\end{aligned}
$$

Example (Ordinary vs deferred)

Ordinary annuity

$$
\begin{aligned}
& P V_{0}=500 a_{611 \%}=2869.05 ; \quad F V_{6}=500 s_{611 \%}=3076.01
\end{aligned}
$$

Deferred annuity

$$
\begin{aligned}
P V_{0} & =500 a_{611 \%} \times 1.01^{-2}=2840.64 \\
F V_{8} & =500 s_{6 \mid 1 \%}=3076.01
\end{aligned}
$$

Definition (Perpetuity)

A Perpetuity is an anunuity with infinite term
Ordinary Perpetuity

$$
a_{\infty} i=\lim _{n \uparrow \infty} a_{n i}=\lim _{n \rightarrow \infty} \frac{1-(1+i)^{-n}}{i}=\lim _{n \rightarrow \infty} \frac{1}{i}\left(1-\frac{1}{(1+i)^{n}}\right)=\frac{1}{i}
$$

Perpetuity-due

$$
\ddot{a}_{\infty<i}=1+\frac{1}{i}
$$

Example

Perpetua will start studying at ULisboa, where she intends to stay and find a job after. $i_{A}=0.05$. Options: a) Flat rent: € $850 /$ month; b) Buy flat: €127,500.

$$
\begin{aligned}
& i_{M}=(1,05)^{1 / 12}-1=0,00407 \rightarrow 0,4074 \% \\
P V= & 850 a_{\infty} i_{M}=208,640,16 €>127,500 €
\end{aligned}
$$

